

Synthesis of Substituted 4(Z)-(Methoxyimino)pentyl-1-piperidines as Dual NK_1/NK_2 Inhibitors

Pauline C. Ting,* Joe F. Lee, John C. Anthes, Neng-Yang Shih and John J. Piwinski

Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033-1300, USA

Received 1 November 2000; accepted 4 December 2000

Abstract—The NK₁ and NK₂ receptor activity of a series of 5-[(3,5-bis(trifluoromethyl)phenyl)methoxy]-3-(3,4-dichlorophenyl)-4(Z)-(methoxyimino)pentyl-1-piperidines was evaluated. Compounds **11d**, **11e**, **11f**, **12a**, and **12k** were found to be our most potent inhibitors. © 2001 Elsevier Science Ltd. All rights reserved.

Introduction

The tachykinins are a family of neuropeptides that share a common C-terminal sequence of Phe-X-Gly-Leu-Met-NH₂ and are found throughout the central and peripheral nervous system.¹ There exists three G-protein linked neurokinin receptors (NK₁, NK₂, and NK₃) through which the biological effects are transmitted. Although each neurokinin can act as an agonist at all three receptors, Substance P (SP), Neurokinin A (NKA), and Neurokinin B (NKB) have the highest affinity for the NK₁, NK₂, and NK₃ receptor, respectively.² The neurokinins may play an important role in several disease states, which include migraine, emesis, pain, arthritis, depression, anxiety, and asthma.³ Our research interest lies in the theory that both SP and NKA are responsible for the excessive mucus secretion, airway constriction, and plasma extravasation found in the pathology of asthma.4

Our goal was to design and synthesize a compound that will block both the NK_1 and NK_2 receptors as a means of alleviating asthma. Compound 1 was identified as a potent dual NK_1 and NK_2 receptor antagonist.⁵ In this communication, we describe a series of analogues that have diverse substituents at the 4-position of the piperidine ring.

Results and Discussion

The substituted 4(Z)-(methoxyimino)pentyl-1-piperidines were prepared as the racemates by the synthetic route outlined in Scheme 1. Reductive amination⁶ of *N*-benzyl-4-piperidone (2) and subsequent hydrogenation⁷ provided amine 3. Coupling of amine 3 with 1-[[3,5-bis(trifluoromethyl)phenyl]methoxy]-3-(3,4-dichlorophenyl)-5-formyl-2(Z)-pentanone O-methyl-oxime (4)⁸ produced the analogues 5.⁹ The synthesis of compounds 9 began with the protection of 4-hydroxymethylpiperidine (6) as its *t*-BOC derivative. Swern oxidation¹⁰ of 6 followed by reductive amination and acid catalyzed removal of the *t*-BOC group afforded amine 8. Addition of amine 8 to aldehyde 4 yielded the targets 9.

The NK₁ and NK₂ biological activity of piperidines **10a–f** are reported in Table 1.¹¹ Replacement of the 4-hydroxy-4-phenylpiperidine subunit of **1** with the 4-(carbon linked amide)piperidines **10a** or **10b** increases NK₁ potency, but appears to decrease NK₂ potency.

^{*}Corresponding author. Fax: +1-908-740-7152; e-mail: pauline. ting@spcorp.com

Table 1. NK₁ and NK₂ antagonistic activity of the piperidines 10a-f

Compd	R	$NK_1 K_i (nM)^a$	NK ₂ K _i (nM) ^a
10a	H ₂ N	8 (±3)	67
10b	⟨N	6 (±2)	59
10c	Ph N H	18 (±4)	144
10d	Ph N	112	137
10e	HZ	44	146
10f	OH N	24 (±7)	16 (±8)

^aValues are means of two experiments. If values are means of three experiments, standard deviation is given in parentheses.

The 4-(nitrogen linked amide)piperidines **10c–e** show greatly reduced NK₂ activity. In this set of racemic analogues, only the hydroxyamino substituted piperidine **10f** is equipotent to our lead structure **1**.

Additional analogues that have a second piperidine or pyrrolidine ring attached to the 4-position of the piperidine are summarized in Table 2. The piperidone 11a¹² shows increased potency for both the NK₁ and NK₂ receptors relative to the 4-hydroxy-4-phenylpiperidine 1. Similarly, the corresponding pyrrolidone analogue 11f and the thiopyrrolidine analogue 11g both retain this desired dual NK₁/NK₂ profile. In contrast, the pyrrolidine analogue 11h reduces NK2 potency to a much greater extent than NK1 potency. Introduction of a hydroxy moiety on the piperidine ring as in 11b or the pyrrolidine ring as in 11i retains NK₁ and NK₂ activity. A carboxyamide group can also be added to the piperidine ring as in 11d or the pyrrolidine ring as in 11e and produces potent NK₁ and NK₂ receptor affinity. However, a less polar carboxyester substituent as in 11c or a carbamate substituent as in 11j shows decreased biological activity.

In Table 3 our analogues that have a methylene linker between the two piperidine rings are tabulated. The parent piperidone 12a and the pyrrolidone analogue 12d possess increased NK_1 and NK_2 potency relative to our lead structure 1. The thiopiperidone 12c and the reduced piperidine analogue 12b are slightly less active. Alkylation at the α -position of the piperidone 12a gives analogues 12e—h. Steric size appears to be detrimental to biological activity as evident by the benzyl analogue 12e. Hydroxy groups are well-tolerated as in analogue 12b. When the second piperidine ring is a morpholine ring as in 12i, NK_1 activity is retained and NK_2 activity

Scheme 1. (a) Substituted amine, NaCNBH₃, CF₃CH₂OH, 3 Å sieves, 42–83%; (b) H₂, Pd/C, MeOH, 83–100%; (c) 1-[[3,5-bis(tri-fluoromethyl)phenyl]methoxy]-3-(3,4-dichlorophenyl)-5-formyl-2(*Z*)-pentanone *O*-methyloxime, 3 Å sieves, NaCNBH₃, CF₃CH₂OH, 32–63%; (d) (*t*-BOC)₂O, CH₂Cl₂, 100%; (e) CICOCOCl, DMSO, CH₂Cl₂, Et₃N, 100%; (f) CF₃COOH, CH₂Cl₂, 100%.

decreases slightly. Substitution at the 2-position of the piperidine ring indicates that the hydroxyethyl side chain of 12k is more active than the hydroxymethyl side chain of 12j. Compounds 12l-p vary the size and polarity of the moiety at the 3-position of the piperidine ring, and none of these analogues are as potent as the piperidone 12a.

Table 2. NK_1 and NK_2 antagonistic activity of the piperidines 11a-j

CI					
Compd	R	NK ₁ K _i (nM) ^a	NK ₂ K _i (nM) ^a		
11a	CKO	18 (±4)	4 (±1)		
11b	OH OH	14 (±3)	15 (±6)		
11c	COOEt	117	20		
11d	CONH₂ N	13 (±4)	10 (±3)		
11e	CONH₂ N—	13 (±3)	11 (±3)		
11f	N-	9 (±2)	7 (±2)		
11g	S N	16 (±3)	23 (±8)		
11h	◯N−	36	195		
11i	HQN_	4	16		
11j	iPrNH Q N-	19 (±7)	67 (±19)		

^aValues are means of two experiments. If values are means of three experiments, standard deviation is given in parentheses.

Table 3. NK_1 and NK_2 antagonistic activity of the piperidines 12a-p

CI CI					
Compd	R	$NK_1 K_i (nM)^a$	$NK_2 K_i (nM)^a$		
12a	C N	10 (±3)	12 (±2)		
12b	○ _N	36 (±23)	26 (±4)		
12c	S	20 (±7)	23 (±6)		
12d	N-	8 (±3)	21 (±6)		
12e	PhON	69	91		
12f	C N	14 (±5)	26 (±7)		
12g	Ç ₀	13	58		
12h	OH OH	7 (±4)	16 (±8)		
12i		14 (±10)	39 (±11)		
12j	OH N	20	53		
12k	OH N	13 (±3)	14 (±3)		
121	OH N	38	47		
12m	OH	50 (±30)	39 (±9)		

(continued on next page)

Table 3 (continued)

Compd	R	NK ₁ K _i (nM) ^a	NK ₂ K _i (nM) ^a
12n	O NHiPr	17 (±3)	33 (±5)
	CONH ₂	25 (110)	27 (110)
120	COOEt	25 (±10)	27 (±18)
12p		16 (±1)	28 (±7)

^aValues are means of two experiments. If values are means of three experiments, standard deviation is given in parentheses.

Conclusion

In conclusion, the left hand region of our lead NK_1/NK_2 inhibitor structure 1 appears to be quite tolerant to structural modifications. We have found that the 4-hydroxy-4-phenyl substituent of piperidine 1 can be replaced by a piperidone ring as in compounds 11a and 12a. From this structure–activity relationship study, several diverse analogues including compounds 11d, 11e, 11f, and 12k were found to be our most potent dual inhibitors. The results of our efforts to further optimize the biological profile of this series of dual NK_1/NK_2 antagonists will be forthcoming.

Acknowledgements

The authors would like to thank Mr. Z. Zhan and Mr. Christian Richard for conducting the NK_1 and NK_2 receptor binding assays.

References and Notes

- 1. Otsuka, M.; Yoshioka, K. Phys. Rev. 1993, 73, 229.
- 2. Regoli, D.; Boudon, A.; Fauchere, J.-L. *Pharmacolog. Rev.* **1994**, *46*, 551.
- 3. Longmore, J.; Swain, C. J.; Hill, R. G. Drug News Perspectives 1995, 8, 5.
- 4. Maggi, C.; Giachetti, A.; Dey, R.; Said, S. *Phys. Rev.* **1995**, 75, 277.
- Reichard, G. A.; Ball, Z. T.; Aslanian, R.; Anthes, J. C.; Shih, N.-Y.; Piwinski, J. P. *Bioorg. Med. Chem. Lett.* 2000, *10*, 2329.
 Borch, R. F.; Bernstein, M. D.; Dupont Durst, H. *J. Am.*
- Chem. Soc. 1971, 93, 2897.
- Hartung, W. H.; Simonoff, R. *Org. React.* 1953, 7, 263.
 Ting, P. C.; Lee, J. F.; Anthes, J. C.; Shih, N.-Y.; Piwinski, J. P. *Bioorg. Med. Chem. Lett.* 2000, 10, 2333.
- 9. All synthesized compounds were fully characterized by ¹H NMR, ¹³C NMR, and high-resolution mass spectroscopy.
- 10. Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480.
- 11. Binding data are the average of two or three independent determinations. Receptor binding assays were performed on membrane preparations containing recombinant human NK₁ or NK₂ receptors in CHO cells. [³H]Sar SP and [³H]NKA were used as the ligands for the NK₁ and NK₂ receptor assays, respectively, at the experimentally derived K_d values. K_i values were obtained according to the Cheng and Prussoff equation. 12. Miller, S. C. W.O. Patent 94/10 146, 1994; *Chem. Abstr.* **1994**, 122, 105675.